Sample Preservation, DNA or RNA Extraction and Data Analysis for High-Throughput Phytoplankton Community Sequencing
نویسندگان
چکیده
Phytoplankton is the basis for aquatic food webs and mirrors the water quality. Conventionally, phytoplankton analysis has been done using time consuming and partly subjective microscopic observations, but next generation sequencing (NGS) technologies provide promising potential for rapid automated examination of environmental samples. Because many phytoplankton species have tough cell walls, methods for cell lysis and DNA or RNA isolation need to be efficient to allow unbiased nucleic acid retrieval. Here, we analyzed how two phytoplankton preservation methods, three commercial DNA extraction kits and their improvements, three RNA extraction methods, and two data analysis procedures affected the results of the NGS analysis. A mock community was pooled from phytoplankton species with variation in nucleus size and cell wall hardness. Although the study showed potential for studying Lugol-preserved sample collections, it demonstrated critical challenges in the DNA-based phytoplankton analysis in overall. The 18S rRNA gene sequencing output was highly affected by the variation in the rRNA gene copy numbers per cell, while sample preservation and nucleic acid extraction methods formed another source of variation. At the top, sequence-specific variation in the data quality introduced unexpected bioinformatics bias when the sliding-window method was used for the quality trimming of the Ion Torrent data. While DNA-based analyses did not correlate with biomasses or cell numbers of the mock community, rRNA-based analyses were less affected by different RNA extraction procedures and had better match with the biomasses, dry weight and carbon contents, and are therefore recommended for quantitative phytoplankton analyses.
منابع مشابه
Co-extraction of DNA and PLFA from soil samples.
Lipid/DNA co-extraction from one sample is attractive in limiting biases associated with microbial community analysis from separate extractions. We sought to enhance established co-extraction methods and use high-throughput 16S rRNA sequencing to identify preferentially extracted taxa from co-extracted DNA. Co-extraction results in low DNA yields and distinct community structure changes.
متن کاملEfficient Nucleic Acid Extraction and 16S rRNA Gene Sequencing for Bacterial Community Characterization
There is a growing appreciation for the role of microbial communities as critical modulators of human health and disease. High throughput sequencing technologies have allowed for the rapid and efficient characterization of bacterial communities using 16S rRNA gene sequencing from a variety of sources. Although readily available tools for 16S rRNA sequence analysis have standardized computationa...
متن کاملUse of High Throughput Sequencing and Light Microscopy Show Contrasting Results in a Study of Phytoplankton Occurrence in a Freshwater Environment
Assessing phytoplankton diversity is of primary importance for both basic and applied ecological studies. Following the advances in molecular methods, phytoplankton studies are switching from using classical microscopy to high throughput sequencing approaches. However, methodological comparisons of these approaches have rarely been reported. In this study, we compared the two methods, using a u...
متن کاملHigh-Throughput Sequencing of 16S rRNA Gene Amplicons: Effects of Extraction Procedure, Primer Length and Annealing Temperature
The analysis of 16S-rDNA sequences to assess the bacterial community composition of a sample is a widely used technique that has increased with the advent of high throughput sequencing. Although considerable effort has been devoted to identifying the most informative region of the 16S gene and the optimal informatics procedures to process the data, little attention has been paid to the PCR step...
متن کامل47 Clone Libraries of Ribosomal RNA Gene Sequences for Characterization of Bacterial and Fungal Communities
Constructing clone libraries from phylogenetic marker genes is currently the most widely used means of assessing microbial community composition and diversity. Although more expensive and time-consuming than community fingerprinting techniques, sequence analysis of clone libraries provides an unparalleled level of phylogenetic resolution due to the long read lengths generated by Sanger sequenci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017